
ELASTIC CHARACTERISTICS OF ELASTOMERS 

E. K. Lebedev UDC 678.4:531 

Two characteristics are introduced for eiastomers subjected to uniaxiai tension: Pois- 
son's ratio ~ and the initial modulus Etr. For ten types of rubbers employed in shoes [i], 
these quantities are constant right up to fracture deformations, it is shown that the shear 
modulus G, Young's modulus E, and the bulk modulus K of rubbers can be calculated from the 
known value of Etr and v. The coefficients Etr , v, G, K, and E (which are constant for 
large elastic (highly elastic) deformations of rubbers) are calculated for deformations of 
one type - uniaxial tension - in contrast to the coefficients in linear theories. 

The coefficients in linear theories (Poisson's ratio v, Young's modulus E, the shear 

modulus G, and the bulk modulus K) are functions of the deformations, they are expressed in 
terms of the constants Etr , v, G, K, and E, and for small deformations they are equal to them. 

Statistical analysis of uniaxial tensile tests for ten types of rubbers [i], showed that 
the tensile stress-strain curves for rubbers in the coordinates true stress otr - relative 
elongation (i - i), where i is the stretching factor, are linear: 

Otr = Etr(}V- ~). (i) 

The slope Etr of the straight lines Otr = f(l - i), being constant for each rubber, is the 
initial modulus. Equation ki) was proposed in [2] as an equation of the highly elastic state. 

The curve Otr = f(i - i), in contrast to the conventional curve o 0 = f(i - i) that is 
usually employed, takes into account the change in the transverse cross-sectional area of the 
sample 

~tr ~oSo/S ~ = k2) 

where o 0 is the conventional stress. The areas S O and S of the transverse cross section of 
the sample before and after deformation are related by the relation [i] 

So/S = I + 2 v ( L - - t ) ,  (3 )  

where v is a constant for each rubber. The relative change in the voltune of the sample is 

0 : ( 1 -  2~,)(~ - i )  (4) 
t + 2~(~-- t)" 

From Eqs .  ~.i)-~,3) we o b t a i n  

Etr(i --I) (5) 
i § 2v ()~ - i)  

or 

Etr 

- i2~) ~ rt~ (6) 
G0 I + ~" 

Figure 1 shows the characteristic tensile stress-strain curves for rubbers [i] in the 
coordinates conventional stress o 0 vs the relative elongation (i - i) and true stress Otr 

vs relative elongation (i - i) (lines 1 and 2). in accordance with expression (6) the con- 
ventional curve approaches asymptotically the straight line CD, whose vertical coordinate is 
Etr/2~. The straight line CD is intersected by the curve Otr vs (l -- i) with (I -- i) = i/2v at 
the point C. On the conventional diagram the point C corresponds to E (for ~ = 0). The 
moduli Etr and E are related by the relation [3] 
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Fig. 1 

Err = [I + 2v(l - -  I)]E. (7) 

For small deformations (l = i) Etr = E and for large deformations Err = E only when the 

transverse cross-sectional area of the sample does not change under uniaxiai tension (v = 0). 
in this case the curves ~tr vs (l -- i) and o 0 vs (l -- i) are linear and coincide with one 
another. 

The transverse cross-sectional area of the rubbers investigated changes under tension 
[i, 2] (v = 0.30-0.49). As a result, Etr # E. The transverse cross-sectional area of the un- 
compressed material (v = 0.5) changes the most. in contrast to the well-known expression 

= E/2( i  + 

in the model of an incompressible body the shear modulus is 

G ~ Etr= E l .  

The conventional stress can be represented, from Eqs. (4) and (5), as 

( 5 )  

~o = Etr0/(l--2v) �9 

Here 

K = Etr/(l--2v ) 

characterizes the resistance of the rubber to volume deformation. 

Expression (9) can be put into the following form with the heip of Eq. (7): 

(9) 

K = E [ i  + 2v( l  - -  l ) ] / ( i  - -  2v). ( 1 0 )  

H e n c e ,  K = ~ ,  f o r  v = 0 . 5  ( f o r  i n c o m p r e s s i b l e  m a t e r i a l )  a nd  K = E f o r  v = 0.  The l a s t  e q u a l -  
i t y  was noted in [4]  in the case of compression of a two-dimensional simulator, when the 
change in the transverse cross section of the deformed rubber is prevented by design. 

For small deformations Etr = E, v = v-and expression (i0) becomes the well-known rela- 
tion 

K =E/ ( i - -2~ .  

From Eqs .  ( 8 )  and  ( 1 0 )  t h e  r a t i o  o f  t h e  s h e a r  m o d u l u s  t o  t h e  b u l k  m o d u i u s  f o r  i a r g e  
d e f o r m a t i o n s  o f  t h e  r u b b e r s  h a s  t h e  fo rm 

G/K = (t  - -  2~ )~ / [ I  + 2v(k - -  t ) ]  ( 1 1 )  

in contrast to the well-known expression 

G/K = (l - -  ~,) /2(I  + ~ ) .  ( 1 2 )  

i t  f o l l o w s  f r o m  E q s .  ( 1 1 )  and  ( 1 2 )  t h a t  i f  t h e  v o l u m e  r e m a i n s  c o n s t a n t  u n d e r  u n i a x i a i  
t e n s i o n  ( ~  = v = 0 . 5 ) ,  t h e  r a t i o  o f  t h e  s h e a r  m o d u l u s  t o  t h e  b u l k  m o d u l u s  i s  e q u a l  t o  z e r o  
for large and small deformations. 
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i~ERiCAL iN~'ESTiGATiON OF THE INTERACTION OF A PLANE WAVE WITH A 

MULTiLAYERED CYLINDER IN THE GROUND 

K. Atabaev, N. Mamadaliev, 
R. K. Khanov, and Sh. D. Shamgunov 

UDC 539.3:624.131.52 

We consider the two-dimensional nonstationary interaction problem of an intense compres- 
sionai plane wave with an infinitely long multilayered deformable cylinder in the ground with 
account of elastic and plastic deformations. The theology of the medium and of the cylinder 
materials is described by the equations of deformation theory [i] of eiastopiastic bodies. 
in this case one uses as ground distortion function the generalized experimental dependence 
o i = oi(e, e i) (e, el, a, o i are the first and second invariants of the deformation and stress 
tensors), taking into account the effect of bulk deformation on the nature of plasticity con- 
ditions [2] ~ = ~ and simultaneously with the ground compression diagram o = o(~) 
satisfying in this specific case the sufficient conditions of uniqueness theorems and of 
minimum work of internal forces, obtained in [3] for a nonlinear medium. A numerical solu- 
tion of the problem for small and finite deformations of the system investigated is imple- 
mented by a difference method of the crossing type [4] in Lagrangian variables without ex- 
plicit separation of surface discontinuities. The approach mentioned has been used for nu- 
merical solution of two-dimensional collision problems of axially symmetric bodies with vari- 
ous obstacles, such as in [5-7]. 

In the present study specific numerical calculations of the problem are carried out for 
the case of streamlining of a wave of given intensity around two-layered and three-layered 
cylinders in the ground with account of wave diffraction by the external surface of the 
cylinder and of the nonlinearity (including iinearity) of its deformable material. We inves- 
tigate the effects of inelastic properties of the ground, physicomechanical characteristics, 
and the thickness of cylinder layers on the distributions of kinematic parameters and stresses 
in them. A comparison is carried out with the stress states of an elastic medium, generated 
during wave diffraction by a cylindrical cavity. We note that problems related to diffrac- 
tion of elastic waves by cavities, solids in the presence of elastic fillers, and shells of 
various shapes in an unbounded elastic or acoustic medium, were treated in [8-12]. 

The present study is an extension of [13, 14] in the study of characteristic features of 
plane wave interactions with a multiiayered cylinder in the ground and the behavior of its 
parameters under strong action. 

Let the front of the intense plane wave propagating in the ground at the moment of time 
t = 0 be adjacent to the external surface of a long two- or three-layered cylinder in the 
ground. For a given wave intensity it is necessary to determine for t > 0 the stress-defor- 
mation states and the kinematic parameters of the ground and of the cylinder with account of 
wave diffraction, the cylinder material deformability, and the elastoplastic deformations 
generated in this case. 

Since the problem is solved within the two-dimensional statement, the equations of motion 
of the ground and of the ring-shaped element of the cylinder are in the Lagrange variables 
(r,~) 
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